High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution.

نویسندگان

  • Hsin-Ping Wang
  • Ke Sun
  • Sun Young Noh
  • Alireza Kargar
  • Meng-Lin Tsai
  • Ming-Yi Huang
  • Deli Wang
  • Jr-Hau He
چکیده

Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply coating of a thin layer of catalytic materials. The SiHJ photoanode with sol-gel NiOx as the catalyst shows a current density of 21.48 mA/cm(2) at the equilibrium water oxidation potential. The SiHJ photocathode with 2 nm sputter-coated Pt catalyst displays excellent hydrogen evolution performance with an onset potential of 0.640 V and a solar to hydrogen conversion efficiency of 13.26%, which is the highest ever reported for Si-based photocathodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C2nr11952h 1515..1521

We report the fabrication of a three dimensional branched ZnO/Si heterojunction nanowire array by a two-step, wafer-scale, low-cost, solution etching/growth method and its use as photoelectrode in a photoelectrochemical cell for high efficiency solar powered water splitting. Specifically, we demonstrate that the branched nanowire heterojunction photoelectrode offers improved light absorption, i...

متن کامل

Photoelectrochemical Hydrogen Production

At the University of Hawaii (UH), the approach to developing high-efficiency, low-cost photoelectrochemical (PEC) processes for the direct production of hydrogen has included the use of integrated electrochemical/optical models to design photoelectrodes based on multijunction thin-film technology; materials research to identify critical issues on photoelectrode efficiency and stability; and the...

متن کامل

Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide

Introduction of an ultrathin (2 nm) film of cobalt oxide (CoOx) onto n-Si photoanodes prior to sputter-deposition of a thick multifunctional NiOx coating yields stable photoelectrodes with photocurrent-onset potentials of B 240 mV relative to the equilibrium potential for O2(g) evolution and current densities of B28 mA cm 2 at the equilibrium potential for water oxidation when in contact with 1...

متن کامل

Double-Layer Graphene Outperforming Monolayer as Catalyst on Silicon Photocathode for Hydrogen Production.

Photoelectrochemical cells are used to split hydrogen and oxygen from water molecules to generate chemical fuels to satisfy our ever-increasing energy demands. However, it is a major challenge to design efficient catalysts to use in the photoelectochemical process. Recently, research has focused on carbon-based catalysts, as they are nonprecious and environmentally benign. Interesting advances ...

متن کامل

Directly Assembled 3D Molybdenum Disulfide on Silicon Wafer for Efficient Photoelectrochemical Water Reduction

DOI: 10.1002/adsu.201700142 chemical fuels became an alternative path for the search of clean energy sources.[1] Therefore, a diverse class of semiconductor photoelectrodes and nonprecious catalytic materials has been investigated for solar water splitting.[2–5] Only a few semiconductor photocathodes and noble metal-free catalysts showed encouraging solar water splitting performances for hydrog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2015